
Navigating LLM Agents and Orchestration: A
Practical Guide for Developers

Executive Summary

Large Language Models (LLMs) like GPT-4 have opened new possibilities in coding and automation, but
getting the most out of them often means moving beyond single-turn Q&A. Agent orchestration is the
practice of coordinating one or more AI-driven agents (LLMs given specific roles and tools) to tackle
complex, multi-step tasks. This approach is increasingly relevant for developers who want AI to assist with
elaborate workflows such as building software, automating multi-step processes, or editing lengthy
documents. Orchestration addresses a key limitation of using a single AI in isolation: as one engineer
observed, asking a lone AI to design, code, test, and document an entire application is like asking one
person to be architect, developer, QA, and technical writer all at once – it quickly leads to inconsistencies,
missed details, and wasted effort . By contrast, a well-structured team of specialised AI agents can
collaborate on these tasks, delivering more reliable and efficient results (often faster and with fewer errors)
than a single generalist agent attempting everything . This guide introduces the concepts and tools you
need to get started with agent orchestration, explains the mental models for how AI agents work together,
compares three leading frameworks (RooCode, LangChain, and CrewAI), and provides a hands-on example
using RooCode inside Visual Studio Code (VS Code). It concludes with practical recommendations, common
pitfalls to avoid, and next steps for mastering multi-agent workflows.

Conceptual Overview

What are LLMs, Agents, and Orchestration? In our context, an LLM is a large language model that can
generate text and code based on prompts. When we turn an LLM into an agent, we give it a specific role,
some autonomy to act (such as calling tools or reading/writing files), and a goal to achieve. An agent is
essentially an AI entity that can perceive (via input prompts or data), decide (via the model’s
reasoning), and act (via tool use or output) in pursuit of a task. Agent orchestration means managing
one or (often) multiple agents in a structured way to accomplish a larger objective. This involves controlling
the sequence of tasks, information flow, and collaboration between agents. You can think of it like a well-
run production line or project team: each agent is responsible for a certain stage or specialty, and a
coordinator ensures they work in the right order and share necessary information.

Analogy – AI Teams with a Conductor: A helpful mental model is to imagine an AI development team with
a project lead. Each AI agent is like a specialist on a team – one might be the “Planner”, another the “Coder”,
another the “Tester”, and so on – and the orchestration is the project manager or conductor that guides
them. Just as a company has departments (engineering, design, QA, etc.) working together under
leadership to achieve a goal, a multi-agent AI system has specialised agents collaborating under an
orchestrator to accomplish the task . The orchestrator (which can be an automated manager agent or
logic in your code) decomposes the big goal into sub-tasks, assigns each sub-task to the appropriate
specialist agent, and then integrates their outputs into a final result. In effect, your role as the developer
shifts from micromanaging a single AI’s every output to directing a team of AI “colleagues.” As one early

1

2

3

1

https://chatgpt.com/?utm_src=deep-research-pdf
https://chatgpt.com/?utm_src=deep-research-pdf
https://www.linkedin.com/pulse/from-solo-ai-super-team-building-software-agent-swarm-zohar-babin-xtfqf#:~:text=Like%20everyone%20else%2C%20I%27ve%20spent,the%20same%20code%20and%20docs
https://www.ibm.com/think/topics/crew-ai#:~:text=problem,collaboration%2C%20autonomous%20workflows%20and%20scalability
https://docs.crewai.com/introduction#:~:text=Just%20like%20a%20company%20has,collaborating%20to%20accomplish%20complex%20tasks

RooCode adopter put it, this approach “shifts your role from sole developer to team manager, overseeing AI
experts handling every aspect of the software-building process” .

Illustration: A “swarm” of AI agents working together. Instead of relying on one AI to do everything, you
orchestrate a group of specialised agents – e.g. an Architect, Coder, Tester, and Documenter – each focusing on
what they do best, guided by a central coordinator (like a project manager or conductor).

How agents and orchestration interact: In an orchestrated setup, typically one agent or component acts
as the navigator or manager. For example, in a coding project scenario, you might have a Task Orchestrator
agent that takes your high-level objective and plans out the work. This orchestrator will break the goal into
a sequence of steps, then delegate each step to the relevant specialist agent (for instance, a “Developer”
agent to write code, a “QA” agent to run tests, etc.) . Crucially, the orchestrator also feeds each agent
the context it needs and nothing extra – much like a team lead giving each team member the specific
requirements for their task. One agent’s output is passed as a concise summary or relevant snippet to the
next agent, rather than dumping the entire project context on everyone . This targeted communication
(akin to passing a JIRA ticket with just the necessary info to the next person) keeps the workflow efficient
and focused . The orchestrator then coordinates the results and handles any issues – for example, if the
Tester agent finds a bug, the orchestrator might route that information back to the Developer agent for
fixing, or flag it for your attention .

In essence, the agents operate like a collaborative unit: each agent has a clear persona and responsibility,
and the orchestration logic ensures they work in harmony. This design has several benefits:

 Focus & Expertise: Each agent does one thing really well. One agent might be dedicated to
planning, another to coding, another to reviewing. This specialization leads to higher-quality output
for each part of the task, since the agent’s prompts and tools are tuned to its role .
Communication between tasks is also clearer, because outputs are passed in a structured way rather
than one AI trying to remember everything it has done.
⚙ Control & Safety: Orchestration allows you to put guardrails on agents. You can restrict what
each agent is allowed to do or access, which adds safety and predictability . For example, you
might ensure the Documentation agent can read code but not modify it, or the Coding agent can
create files but not delete important data. This way, each agent operates within a limited scope,
much like how a database admin might have access to certain systems that a front-end developer
does not. Such boundaries prevent accidents and malicious actions by keeping agents focused only
on their domain.
Consistency: Because each agent follows a defined role and set of instructions (its “persona”), the
final outputs tend to be more consistent in style and standards. The documentation agent will
consistently produce docs in the chosen format, the coder will follow the project’s coding style, etc.,
rather than a single AI trying to mimic all roles inconsistently .
⚡ Efficiency: Multi-agent orchestration can be more efficient in both time and computing resources.
Instead of one model re-processing the entire context on every step, agents can pass along
summarised context and results to each other. This drastically reduces redundant processing and
cuts down on prompt size . The orchestrator ensures the process moves step-by-step without the
AI looping or getting stuck on one huge task. In practical terms, it means fewer tokens wasted and
quicker convergence on a solution. As a Reddit user noted about RooCode’s approach, having sub-
tasks return summaries to parent tasks “streamline(s) workflow significantly”, reducing unnecessary
context switching and repetition .

4

5 6

7

8

7

•

9

•
10

•

11

•

12

13

2

https://www.linkedin.com/pulse/from-solo-ai-super-team-building-software-agent-swarm-zohar-babin-xtfqf#:~:text=extension%20marketplace,architecture%20to%20testing%20and%20documentation
https://www.linkedin.com/pulse/from-solo-ai-super-team-building-software-agent-swarm-zohar-babin-xtfqf#:~:text=2,Document
https://www.linkedin.com/pulse/from-solo-ai-super-team-building-software-agent-swarm-zohar-babin-xtfqf#:~:text=4,relevant%20to%20their%20task%20needs
https://www.linkedin.com/pulse/from-solo-ai-super-team-building-software-agent-swarm-zohar-babin-xtfqf#:~:text=4,relevant%20to%20their%20task%20needs
https://www.linkedin.com/pulse/from-solo-ai-super-team-building-software-agent-swarm-zohar-babin-xtfqf#:~:text=With%20Boomerang%20Tasks%2C%20these%20agents,ready%20for%20their%20specific%20role
https://www.linkedin.com/pulse/from-solo-ai-super-team-building-software-agent-swarm-zohar-babin-xtfqf#:~:text=4,relevant%20to%20their%20task%20needs
https://www.linkedin.com/pulse/from-solo-ai-super-team-building-software-agent-swarm-zohar-babin-xtfqf#:~:text=,communication%20between%20tasks%20and%20agents
https://www.linkedin.com/pulse/from-solo-ai-super-team-building-software-agent-swarm-zohar-babin-xtfqf#:~:text=,Tester%20only%20writes%20test%20files
https://www.linkedin.com/pulse/from-solo-ai-super-team-building-software-agent-swarm-zohar-babin-xtfqf#:~:text=,specific%20instructions%20and%20defined%20standards
https://www.linkedin.com/pulse/from-solo-ai-super-team-building-software-agent-swarm-zohar-babin-xtfqf#:~:text=,step
https://www.reddit.com/r/ChatGPTCoding/comments/1j62zn0/roo_code_38_boomerang_tasks_smarter_diff_edits/#:~:text=This%20update%20sounds%20incredible%21%20The,switching

Handles Complexity: Breaking a large, complex problem into smaller pieces makes it feasible for AI
to handle. Each agent tackles a manageable chunk, so even if the overall project is very complicated,
the AI isn’t overwhelmed trying to solve everything in one go . This approach mirrors good
human project management and allows tackling tasks that would be too large for a single prompt
or model context window. Multi-agent systems have been shown to scale to problems that single
agents struggle with, often with improved reliability .
🗺 Structured Workflow: The orchestration imposes an order of execution that can mirror
established best practices (for example, in software development: design -> implementation ->
testing -> documentation). By mimicking proven workflows, the AI agents operate in a more
structured and logical fashion . This makes their process easier to understand and trust – you can
literally observe a plan being executed step by step, rather than a monolithic black-box response
from one AI.

In summary, orchestrating LLM agents is like managing a well-drilled team rather than relying on a single jack-
of-all-trades. With the conceptual stage set, let’s compare some tools that help implement these ideas in
practice.

Landscape Comparison: Roocode vs. LangChain vs. CrewAI

There are now several frameworks and tools that enable agent orchestration. We will focus on three
prominent ones – RooCode, LangChain, and CrewAI – each with its own philosophy and strengths. All
three aim to help you build workflows where LLM-powered agents can plan, use tools, and collaborate to
achieve goals, but they differ in design and use-cases. Below is a comparison of their practical capabilities,
especially for coding assistance, workflow automation, and content editing tasks.

RooCode – AI Dev Team in Your Editor

RooCode (often just called “Roo”) is a Visual Studio Code extension that provides an autonomous coding
agent right inside your editor . Its design philosophy is to give you a “whole dev team” of AI agents to
streamline software development . In RooCode, you interact with an AI assistant that can do things like
generate code, modify files, run commands, and even control a browser, all under the hood of VS Code.
Notably, RooCode supports direct file I/O – it can read your project files and write new ones – as well as
execute terminal commands (for example, to run tests or install dependencies) . It can integrate with any
OpenAI-compatible model (GPT-4, etc., or custom models) and you can customize its “persona” via Custom
Modes .

Strengths & Use Cases: RooCode excels at developer productivity tasks. Out-of-the-box, it can
generate new code from natural language descriptions, refactor or debug existing code, write
and update documentation, answer questions about your codebase, automate repetitive build
tasks, and even scaffold entire projects . For instance, if you ask RooCode, “Create a Python
function to parse CSV files and unit test it,” it will plan the steps, write the code in your editor, maybe
create a new file for tests, run those tests, and refine the code if needed. This is possible because
RooCode employs multiple modes/agents under the hood: e.g. a Planner agent to break down the
task, a Developer agent to write code, a Tester agent to run tests, etc., coordinated by a central
Navigator (or orchestrator). The extension’s deep integration with VS Code means results appear
directly in your workspace — code gets written into files and you can chat with the agent in a side
panel. It’s very immediate and interactive, which is great for coding workflows. Another strong point

•

14

15 2

•

14

16

17

18

19

•

20

3

https://www.linkedin.com/pulse/from-solo-ai-super-team-building-software-agent-swarm-zohar-babin-xtfqf#:~:text=,manageable%20for%20the%20AI%20agents
https://www.ibm.com/think/topics/crew-ai#:~:text=Rather%20than%20trying%20to%20encompass,distinct%20execution%20paths%20are%20required
https://www.ibm.com/think/topics/crew-ai#:~:text=problem,collaboration%2C%20autonomous%20workflows%20and%20scalability
https://www.linkedin.com/pulse/from-solo-ai-super-team-building-software-agent-swarm-zohar-babin-xtfqf#:~:text=,manageable%20for%20the%20AI%20agents
https://github.com/RooCodeInc/Roo-Code#:~:text=Roo%20Code%20is%20an%20AI,It%20can
https://www.linkedin.com/pulse/from-solo-ai-super-team-building-software-agent-swarm-zohar-babin-xtfqf#:~:text=Enter%20Roo%20Code,architecture%20to%20testing%20and%20documentation
https://github.com/RooCodeInc/Roo-Code#:~:text=,and%20capabilities%20through%20Custom%20Modes
https://github.com/RooCodeInc/Roo-Code#:~:text=,and%20capabilities%20through%20Custom%20Modes
https://github.com/RooCodeInc/Roo-Code#:~:text=What%20Can%20Roo%20Code%20Do%3F

is long-form content editing within a project: RooCode can handle multi-file or multi-chapter edits
by using its planning capability (called Boomerang Tasks mode) to break the job into segments. For
example, you could instruct, “Document this codebase” or “Improve the readability of all chapters in
this documentation folder,” and RooCode will dispatch the Documenter agent to each file in turn,
each time providing it with the context it needs rather than overwhelming it with everything at once

. The built-in Boomerang Tasks feature (the sub-task orchestration mode) is a game-changer for
these scenarios – it automatically breaks a main task into smaller sub-tasks and orchestrates
their execution with context hand-offs between agents . This makes RooCode particularly
powerful for large coding projects or writing projects where structure and sequence matter.

Trade-offs: Because RooCode is an editor extension, it’s currently tailored to an individual developer’s
workflow. It shines when you are in VS Code and want the AI to assist you step-by-step. However, it’s
less of a general-purpose orchestration library that you’d import into a backend service (unlike
LangChain or CrewAI). In other words, RooCode is ideal for interactive use (where you guide the AI
and occasionally step in), but not designed to be a headless framework in a production system. Its
focus on software development means it comes with useful presets (like modes for coding,
debugging, documenting, etc.), but it might require some creativity to repurpose for non-coding
tasks. That said, RooCode’s Custom Modes system is quite flexible – you can define new agent
personas with custom instructions – so you could configure it for, say, a text editing or research task
if working within VS Code. The main limitation is that everything happens inside the VS Code
environment, so for workflow automation beyond coding projects (e.g. orchestrating cloud
infrastructure or external services in an enterprise pipeline), you might look to more general
frameworks. Another consideration is that RooCode, while free and open-source, is a fast-evolving
project; you’ll want to keep it updated and be mindful of changes. Overall, for a developer who wants
to delegate coding chores to an AI team, RooCode offers perhaps the most streamlined, ready-to-
use experience – essentially turning VS Code into a multi-agent IDE.

LangChain (LangChain + LangGraph) – Generalist Framework with Rich Tooling

LangChain is one of the most popular Python frameworks for building applications with LLMs. Its primary
strength is its extensive ecosystem: it provides modules to handle prompts, memories, tool integrations,
and chains of calls. With LangChain, you can create agents that use tools (like web search or a calculator)
and define chains of LLM calls (sequential or branching logic). For agent orchestration, LangChain
introduced an extension called LangGraph, which treats complex workflows as explicit graphs of nodes.
Each node in a LangGraph is an operation or an agent step, and edges define the flow of data/control .
This graph-based approach allows very fine-grained control over multi-step tasks – you can visualize and
design flows with loops, conditionals, parallel branches, etc., much like a workflow engine or state machine
for AI . Crucially, LangChain/LangGraph leverages all of LangChain’s pre-existing integrations,
meaning each node/agent in the graph can make use of the wide array of tools, vector databases, and
memory systems that LangChain supports .

Strengths & Use Cases: The flexibility of LangChain is its greatest asset. If you need to integrate AI-
driven agents into a larger application or service, LangChain likely has a template or component to
help. It’s well-suited for building things like conversational agents that can do tool use, data analysis
pipelines (where the AI might call a SQL database, then summarize the results, etc.), or custom
chatbots with retrieval-augmented generation. For coding tasks, LangChain doesn’t provide a single
turnkey “AI coder” but you could construct one: for example, using an agent that can call a Python

8

21

•

22

23 24

25 22

•

4

https://www.linkedin.com/pulse/from-solo-ai-super-team-building-software-agent-swarm-zohar-babin-xtfqf#:~:text=With%20Boomerang%20Tasks%2C%20these%20agents,ready%20for%20their%20specific%20role
https://mychen76.medium.com/boomerang-tasks-make-ai-agent-powered-development-fun-again-522bf8962dc4#:~:text=Roo%20Code%20promotes%20a%20custom,Ask%2C%20architect%2C%20code%2C%20or%20debug
https://langfuse.com/blog/2025-03-19-ai-agent-comparison#:~:text=LangGraph%20extends%20the%20well,tooling%20and%20integrations%20from%20LangChain
https://langfuse.com/blog/2025-03-19-ai-agent-comparison#:~:text=directed%20acyclic%20graph,of%20useful%20tooling%20and%20integrations
https://medium.com/@arulprasathpackirisamy/mastering-ai-agent-orchestration-comparing-crewai-langgraph-and-openai-swarm-8164739555ff#:~:text=LangGraph%20is%20fundamentally%20built%20around,with%20edges%20controlling%20that%20Node2
https://medium.com/@arulprasathpackirisamy/mastering-ai-agent-orchestration-comparing-crewai-langgraph-and-openai-swarm-8164739555ff#:~:text=Workflows%20blog,Agents%20with%20LangChain%E2%80%99s%20Agent%20Framework
https://langfuse.com/blog/2025-03-19-ai-agent-comparison#:~:text=LangGraph%20extends%20the%20well,tooling%20and%20integrations%20from%20LangChain

REPL tool to execute code or a file I/O tool to read/write code files. Indeed, Microsoft’s AutoGen
framework (an advanced agent system for coding and knowledge tasks) is built on similar principles,
with an Orchestrator agent coordinating a Coder agent, a WebSearcher agent, etc., to accomplish
coding goals . LangChain gives you the building blocks to create such setups. For workflow
automation, LangChain shines when you have a variety of steps involving different data sources or
APIs. You can chain together an arbitrary sequence of LLM calls and tool usages – e.g. an agent
could call an API, feed the result to another LLM for interpretation, then decide which step to take
next. This is highly useful for automation scenarios like processing form inputs, generating reports
from databases, performing multi-step calculations with commentary, and so on. For long-form
editing or content generation, LangChain can be used to implement a plan-and-write strategy: one
could write a script that uses an LLM to outline a document, then calls another LLM to fill in each
section, etc. The key advantage here is you can customize every step. If RooCode is like an off-the-
shelf car, LangChain is like a garage of parts – you can build the exact vehicle you need. It also has a
large community and many examples, which is helpful when learning or when you run into a
roadblock.

Trade-offs: The power of LangChain comes with complexity. It requires writing code and
understanding LangChain’s abstractions to get anything done. Developers often note that while
LangChain is extremely capable, it has a learning curve and sometimes “too much magic” in its
higher-level APIs. You might need to wrestle with prompt templates, memory management, and
keeping track of the state as your agents work through a task. In fact, LangChain’s flexibility can
sometimes lead to confusion if the framework’s internal decisions (like how it manages conversation
history or tool invocation) aren’t transparent. By default, LangChain’s agent paradigm was often
single-agent (one LLM with a suite of tools, following a ReAct-style prompt). The introduction of
LangGraph (multi-agent DAGs) adds more structure, but using it is comparatively low-level – one
Medium review noted that LangGraph is “harder to implement” than a framework like CrewAI,
though it allows more complex flows in return . In practical terms, if your goal is very coding-
centric or document-centric, LangChain may feel like general plumbing you have to assemble,
whereas a specialised tool (RooCode or others) might get you there faster. Another consideration:
LangChain is rapidly evolving; its API might change, and keeping up with the latest best practices
(LangSmith for monitoring, new agent types, etc.) can be a bit of a moving target. In summary,
LangChain is best when you need full control and are prepared to code your orchestration
logic – it’s the go-to for many enterprise and research projects that demand custom solutions, but it
may be overkill for someone who just wants an AI co-pilot in their editor.

CrewAI – Lean, Multi-Agent Orchestration Made Simple

CrewAI is a newer player that specifically focuses on multi-agent orchestration with an emphasis on
simplicity and speed. It’s a lightweight Python framework (open-source) built entirely from scratch, not on
LangChain . The core idea of CrewAI is to let you easily define a team of agents (called a “crew”) and
manage their collaboration through either a high-level API or a more scriptable flow. It provides two main
abstractions: Crew – which is essentially an autonomous team of agents working together with a set goal –
and Flow – an optional way to script the sequence of interactions in a more deterministic way . In
CrewAI, each agent is configured with a role, a goal, some backstory/persona, and a set of tools it can use

. That’s basically all you need to start; the framework handles spinning up the agents and managing
their dialogues (if they need to communicate) or their task execution order. By default, CrewAI runs the
agents in a linear pipeline: tasks are executed in sequence under a controller (the crew manager) that

26 27

•

28

29

30

31

5

https://medium.com/@aydinKerem/which-ai-agent-framework-i-should-use-crewai-langgraph-majestic-one-and-pure-code-e16a6e4d9252#:~:text=AutoGen%20is%20a%20framework%20developed,tasks%20in%20the%20IT%20industry
https://medium.com/@aydinKerem/which-ai-agent-framework-i-should-use-crewai-langgraph-majestic-one-and-pure-code-e16a6e4d9252#:~:text=,the%20new%20state%20of%20the
https://medium.com/@aydinKerem/which-ai-agent-framework-i-should-use-crewai-langgraph-majestic-one-and-pure-code-e16a6e4d9252#:~:text=Figure%203%20Example%20Graph%20of,an%20Agent
https://docs.crewai.com/introduction#:~:text=What%20is%20CrewAI%3F
https://docs.crewai.com/introduction#:~:text=,orchestration%20and%20supports%20Crews%20natively
https://medium.com/@aydinKerem/which-ai-agent-framework-i-should-use-crewai-langgraph-majestic-one-and-pure-code-e16a6e4d9252#:~:text=Creating%20an%20agent%20with%20crewAI,framework%20requires%20four%20attributes

makes sure each agent’s output feeds into the next task properly . This is akin to having a list of tasks
that the “Crew” will work through one by one, which is straightforward to understand and debug.

Strengths & Use Cases: CrewAI’s sweet spot is when you want the benefits of multi-agent
orchestration but with minimal overhead in setting it up. For a developer or analyst new to this area,
CrewAI offers a gentle learning curve – you can define agents and tasks in a few lines of code or
YAML, and get a multi-agent system running quickly . This makes it very appealing for
prototyping and for educational purposes (indeed, the CrewAI community has “certified” a large
number of developers, indicating strong outreach and adoption in learning environments). In
practical use, CrewAI is suitable for many of the same scenarios as LangChain’s agents, but you’ll
typically use CrewAI when you specifically need multiple agents with distinct roles cooperating. For
example, if you want to automate a workflow like “analyze survey results and then write a report”, you
could set up a crew with a “Analyst” agent to do data analysis (using a Python tool perhaps) and a
“Writer” agent to compose the report, and a manager that passes the analysis output to the writer.
CrewAI would let you implement that in a straightforward way with perhaps one function call to kick
off the crew and an easy way to retrieve structured results. It’s also great for coding scenarios if you
want to write the orchestration yourself programmatically (as opposed to the interactive RooCode
style). For instance, you could define a crew where one agent generates code, another reviews it for
bugs, and a third improves the performance. Then by calling crew.run() (or kickoff() as per
the API) you let the whole team work through those stages autonomously. CrewAI emphasizes
collaborative intelligence – agents can even delegate tasks to each other or ask for help, according
to the roles you define . Under the hood, it keeps a shared state so agents have memory of
what’s happened in the workflow, and it structures outputs (you can enforce schemas on agent
outputs if you want, which is useful for getting JSON results, etc.) . For workflow automation,
CrewAI is powerful: it’s easy to integrate into a Python script or backend service. You can trigger a
CrewAI process as part of a pipeline (for example, run a crew every night to generate an analytics
report from yesterday’s data). It’s designed to be fast and lean, so it can be a good fit for production
scenarios where overhead and latency matter. For document editing or multi-step content tasks,
CrewAI is quite capable as well – you can explicitly create a crew with, say, an “Editor” agent and a
“Proofreader” agent to sequentially refine a document. Compared to LangChain, CrewAI might
require less code to do this (since it’s geared towards multi-agent from the get-go), and compared to
RooCode, it’s not tied to VS Code and can run anywhere Python runs.

Trade-offs: CrewAI’s design for simplicity means it trades off some flexibility. The default execution
model is deterministic and linear – agents take turns in a fixed sequence . This is excellent for
transparency (it’s easy to follow what’s happening) but if you wanted truly dynamic interactions (like
agents freely messaging each other or a complex dependency graph of tasks), you would have to
implement that by customizing the flow or building on top of CrewAI’s lower-level hooks. In contrast,
LangChain’s LangGraph can naturally represent branching or looping workflows; CrewAI would
require more manual coding to do the same. That said, CrewAI does allow conditional logic and
custom flows, but you need to write Python code for those cases (which is still not too onerous).
Another consideration is that CrewAI is relatively new. It might not have the vast array of pre-built
connectors that LangChain has. For example, if you need to plug into a proprietary vector database
or some niche API, LangChain likely has a module for it, whereas with CrewAI you might have to
write a custom tool wrapper (which CrewAI supports – you can define new tools for agents easily). In
terms of modeling power, CrewAI is model-agnostic but some have noted that it did not initially
handle things like streaming outputs or function-calling as smoothly as others . These are

32

•

33

34

30 35

36

•
32

37

6

https://medium.com/@arulprasathpackirisamy/mastering-ai-agent-orchestration-comparing-crewai-langgraph-and-openai-swarm-8164739555ff#:~:text=The%20memory%20system%20allows%20agents,cumulative%20knowledge%20throughout%20the%20workflow
https://medium.com/@aydinKerem/which-ai-agent-framework-i-should-use-crewai-langgraph-majestic-one-and-pure-code-e16a6e4d9252#:~:text=With%20CrewAI%20framework%20it%E2%80%99s%20much,done%20without%20a%20setup%20hassle
https://docs.crewai.com/introduction#:~:text=With%20over%20100%2C000%20developers%20certified,ready%20AI%20automation
https://docs.crewai.com/introduction#:~:text=,orchestration%20and%20supports%20Crews%20natively
https://www.ibm.com/think/topics/crew-ai#:~:text=crewAI%27s%20inherent%20delegation%20and%20communication,delegate%20work%20or%20ask%20questions
https://medium.com/@arulprasathpackirisamy/mastering-ai-agent-orchestration-comparing-crewai-langgraph-and-openai-swarm-8164739555ff#:~:text=State%20management%20is%20straightforward%2C%20tracking,JSON%2FPydantic%29%20enabling%20schema%20enforcement
https://medium.com/@arulprasathpackirisamy/mastering-ai-agent-orchestration-comparing-crewai-langgraph-and-openai-swarm-8164739555ff#:~:text=The%20memory%20system%20allows%20agents,cumulative%20knowledge%20throughout%20the%20workflow
https://medium.com/@aydinKerem/which-ai-agent-framework-i-should-use-crewai-langgraph-majestic-one-and-pure-code-e16a6e4d9252#:~:text=Crewai%2C%20a%20scalable%2C%20data,can%20be%20a%20huge%20problem

technical nuances: e.g., if you want to see partial results from an agent before it finishes (streaming)
or use the newest structured OpenAI function calling within agents, ensure CrewAI’s latest version
supports it. Finally, for coding specifically, CrewAI doesn’t come with a GUI or editor integration – you
will be working in code. This is fine for backend automation and many developer workflows, but if
you prefer a chat interface or an IDE assistant, CrewAI by itself doesn’t provide that (though one
could certainly build a simple streamlit app or CLI on top of it). In summary, CrewAI is a great
choice for quickly assembling multi-agent workflows with minimal fuss. It hits a middle ground
between the plug-and-play ease of RooCode and the build-everything ethos of LangChain. Its focus
on autonomous “crews” with well-defined roles makes it conceptually easy to design your agent
team and get results, as long as your use case aligns with a sequential or scripted collaboration of
agents.

(For completeness, note that there are other frameworks out there beyond these three – for example, Microsoft’s
AutoGen, OpenAI’s experimental Swarm API, and various research projects – but in this guide we’re focusing on
the above tools which are practical and accessible to developers starting out.)

Hands-On with RooCode and VSCode

In this section, we’ll walk through a concrete example of using RooCode inside Visual Studio Code to build,
modify, and test an agent-driven workflow. The scenario will be coding-centric, as RooCode is particularly
strong there, but we’ll also touch on how you could adapt it to long-form document editing. We assume you
have VS Code open with the RooCode extension installed and configured (i.e., you’ve connected it to an AI
model of your choice and have a project or workspace ready).

Scenario: Suppose you want to create a small web app and let the AI handle much of the grunt work –
generating boilerplate code, creating an HTML UI, writing tests, and even drafting documentation for the
project. Here’s how you could do it step by step using RooCode’s agent orchestration:

Start a Project and Open RooCode Panel: Open an empty project folder in VS Code (or an existing
project where you want to add a new feature). Open the RooCode extension’s panel – usually this is
accessible via the VS Code sidebar (look for the Roo logo) or the command palette. Decide what you
want the AI to do. In our case, let’s say: “Build a simple Time-Tracking web application.” You might
prepare a short specification (perhaps as a Markdown file or even just a clear idea in your head).
Since RooCode works via natural language, you can simply tell it your goal. For example, in the
RooCode chat interface you might write: “I need to create a Time-Tracking app with a frontend, backend
API, and a database. It should allow users to log hours and view reports. Please design the architecture
and implement it step by step.” This single prompt essentially hands the big task to the AI.

RooCode’s Orchestrator Plans the Work: Once you submit your request, RooCode will typically
engage its Navigator (the central orchestrator agent, sometimes called the “Project Manager” in
custom modes). In Boomerang Task mode, RooCode will break down your high-level request into
smaller tasks automatically . You’ll see in the VS Code chat or output window something like:

Plan:

Design the application architecture (identify components like frontend, backend, database).

1.

2.

38

3.

1.

7

https://mychen76.medium.com/boomerang-tasks-make-ai-agent-powered-development-fun-again-522bf8962dc4#:~:text=,Ask%2C%20architect%2C%20code%2C%20or%20debug

Generate the frontend code (perhaps a simple HTML/JS or React interface).
Generate the backend code (could be a Python Flask or Node.js API for logging hours).
Connect to a database (set up a simple SQLite or similar database schema).
Write unit tests for key functions.
Write documentation (README or usage guide).

RooCode might ask for confirmation or just proceed, depending on settings. At this point, review the plan.
This is your chance to refine it if something is off. For example, if you intended this to be a purely local app
with no database server, you might adjust the plan to use a local file instead of a database. You can
communicate with the AI in natural language to clarify requirements. (This interactivity is a boon for
beginners: it ensures the AI is on the right track before writing hundreds of lines of code.)

Execution – Agents at Work: After the plan is set, RooCode will start executing each task in turn,
using the appropriate agent mode for each. Under the hood, it’s as if you have a team consisting of a
Planner, Developer, Tester, Documenter, etc., all coordinated by the Navigator. You will see outputs in
real-time in VS Code. For example:
For the architecture design step, RooCode might output a summary of the proposed architecture
(e.g. “Frontend: HTML/JS, Backend: Flask API with endpoints X, Database: SQLite with tables Y…”). This
is the Planner agent output.
Next, the Developer agent kicks in to create files. You’ll see new files being created in your project:
perhaps index.html , app.py (Flask code), etc. RooCode writes code directly into these files .
It might even show diffs in the chat as it updates files, so you know what content is being written.
Once some code is written, the Tester (QA) agent may run. RooCode can execute terminal
commands, so it might run pytest or another test command in an integrated terminal . If tests
were generated, it executes them. If a test fails or an error occurs (e.g., the app crashes on run),
RooCode will catch that feedback. Thanks to the orchestration, it can handle these errors: the
Navigator agent might log the failure and reassign the task to the Developer agent to fix, or simply
inform you of the issue and await guidance . Often, minor bugs are automatically resolved by the
AI in a second pass – it knows the Tester found a problem, so the Developer agent will modify the
code to address it.

This process continues through each step. For the documentation task, for instance, the
Documenter agent will create or update a README.md file, summarising how to use the app, what
the design is, etc., all based on what was built. Because of RooCode’s design, each agent was given
just the context it needed: for example, the Documenter was likely fed a summary of the architecture
and maybe the code docstrings, not the entire codebase, to write the docs . This context filtering
is handled automatically (the orchestrator “passes only key info” between agents).

Monitor and Intervene as Needed: As the agents do their work, keep an eye on the outputs. One
common beginner mistake is to “fire and forget” – instead, it’s wise to watch each step’s result.
RooCode’s interface makes this easy by showing each subtask’s outcome. If the AI seems to be going
down the wrong path (maybe the architecture is not what you wanted), you can pause and correct it.
You might, for example, stop the process after step 1 and say, “Actually, use MongoDB instead of
SQLite.” The orchestrator will adjust subsequent steps accordingly. This human-in-the-loop ability is
powerful. That said, RooCode’s goal is to free you from having to micromanage – often it will proceed
through the whole plan, and you’ll just verify at the end. The agents are working with the context
they need, and the orchestrator is ensuring the pipeline flows. Many users report that this

2.
3.
4.
5.
6.

1.

2.

3.
39

4.
39

40

5.

7

6.

8

https://github.com/RooCodeInc/Roo-Code#:~:text=,Automate%20browser%20actions
https://github.com/RooCodeInc/Roo-Code#:~:text=,Automate%20browser%20actions
https://www.linkedin.com/pulse/from-solo-ai-super-team-building-software-agent-swarm-zohar-babin-xtfqf#:~:text=5,ensures%20the%20project%20moves%20forward
https://www.linkedin.com/pulse/from-solo-ai-super-team-building-software-agent-swarm-zohar-babin-xtfqf#:~:text=4,relevant%20to%20their%20task%20needs

experience feels like being a team lead reviewing each commit rather than writing all the code
yourself.

Testing the Final Output: Once RooCode finishes the last task, you should have a working (in
theory) Time-Tracking app in your project. Now it’s time to run and test it for real. Because
RooCode already ran unit tests (if any) and perhaps even a quick local server test, you might already
have confidence it works. Go ahead and start the app (e.g. python app.py or however the project
is run) to do a manual test in your browser. If anything is wrong – perhaps a feature isn’t
implemented quite to your liking – you can re-engage the AI. For example, if you notice the UI is very
minimal, you could say in RooCode, “The app works, but please improve the frontend styling and add
a dark mode option.” This could initiate another round of development tasks. One beauty of having
the multi-agent setup is that RooCode can handle iterative improvements gracefully: the Planner
agent might create a new task for “Improve CSS and add dark mode,” the Developer will edit the
files, etc., and Tester can regression test if applicable. It’s an iterative loop where you steer higher-
level priorities and the AI takes care of the detailed execution.

Modify the Workflow or Agents (Advanced): As you become comfortable, you might want to tailor
the agents to your needs. RooCode allows you to edit or create Custom Modes – essentially you can
define new agent personas or tweak existing ones. For instance, if you find the code style generated
isn’t what you want, you could create a custom “Style Guru” agent mode that enforces a certain
linting standard, and include that as one of the steps in the Boomerang task sequence. You can edit
the .roomodes JSON configuration (either globally or per-project) to add such modes; RooCode’s
documentation provides guidance on this. As an example, one user added modes like “Security
Auditor” and “Performance Optimizer” to their agent team, to automatically review code for
vulnerabilities and efficiency issues . By modifying your crew of AI specialists in this way, you
get an even more powerful assistant. Testing an agent workflow in this context often means
validating that the new agent does what you expect: you might run a smaller task to see if, say, the
Security Auditor agent properly flags insecure code. Over time, you’ll develop an intuition for how to
prompt and configure each agent for best results.

Adapting to Document Editing: While the above steps focused on coding, you can approach long-form
text editing similarly. Imagine you have a 10-chapter draft of a technical report that needs editing and
consistency checks. Using RooCode, you could do the following: “Take this report and edit it chapter by
chapter for clarity, then produce a summary of each chapter.” The AI would treat each chapter as a subtask. For
instance, a “Writer” agent mode could rewrite each chapter, an “Editor” agent could polish language, and
maybe a “Reviewer” agent could check for consistency of terminology across chapters. The orchestrator
ensures that as one chapter is finished, the key points (or style decisions) are carried over as needed to the
next, so the document remains coherent. In fact, such workflows have been demonstrated: one case study
showed RooCode turning a raw PDF guide into a polished blog post with accompanying social media
snippets in under a minute, by orchestrating specialised modes for research and writing – all triggered by a
single prompt within VS Code . The AI agents handled reading the PDF, extracting insights, drafting a
well-structured article, and even generating tweets about it, step by step. This goes to show that by
structuring the task and letting multiple agents tackle it in sequence, you can automate content creation or
editing tasks that normally involve several phases and human roles. The key is to clearly specify the
outcome you want (e.g. “research this and then write that”), and RooCode’s orchestrator will take care of
mode-switching and context passing to make it happen.

7.

8.

41 42

43 44

9

https://www.linkedin.com/pulse/from-solo-ai-super-team-building-software-agent-swarm-zohar-babin-xtfqf#:~:text=,like%20a%20dedicated%20security%20consultant
https://www.linkedin.com/pulse/from-solo-ai-super-team-building-software-agent-swarm-zohar-babin-xtfqf#:~:text=quality%20output%2C%20with%20clear%20communication,between%20tasks%20and%20agents
https://publish.obsidian.md/aixplore/AI+Systems+%26+Architecture/agentic-content-creation-openai-guide-case-study#:~:text=class%3D%22callout%22%20data,Ready%20Materials%20Content%20creation
https://publish.obsidian.md/aixplore/AI+Systems+%26+Architecture/agentic-content-creation-openai-guide-case-study#:~:text=agents%20with%20specialized%20capabilities%2C%20we,area%22%3E%20%23%23%23%201.%20Specialized

Tips for the Hands-On Process: Work incrementally. It’s often wise to run the AI through one or two sub-
tasks at a time (you can ask RooCode to execute step-by-step and pause, if you prefer, rather than full auto-
mode). This allows you to inspect outputs and adjust course. Also, don’t hesitate to use RooCode in a
conversational way – you can ask the agent why it chose a certain design, or to explain a piece of code it
wrote. The agents can communicate in natural language, so as a developer you can gain insight into the AI’s
reasoning (to a degree). This is part of “testing” the workflow as well: verifying that the AI’s reasoning aligns
with your requirements.

Recommendations, Pitfalls, and Next Steps

Using a multi-agent orchestration tool like RooCode can be a transformative experience for a developer, but
to get the most out of it, keep these recommendations and cautions in mind:

Getting the Most out of RooCode (Tips and Best Practices)

Clearly Define Your Goals: The success of an agent orchestration often starts with the prompt. Be
explicit about what you want to achieve and the desired outputs. For example, instead of saying “Build
me something cool,” specify “Build a command-line TODO app in Python with the ability to add, list,
and complete tasks, and include unit tests.” Clear goals lead the Planner agent to make a better plan

. Also mention any constraints or preferences (programming language, libraries, tone of writing,
etc.) up front.
Leverage Custom Modes and Specialization: One of RooCode’s strengths is the ability to customize
agent personas. Take time to set up or tweak modes for your domain. If you’re working on data
science, you might create a “Data Analyst” agent mode; for writing, maybe a “Proofreader” mode.
Specialising agents with the right persona and tools will yield better results than one-size-fits-all.
RooCode’s default modes cover common roles (Developer, Tester, Documenter, etc.), which you can
use as-is, but don’t shy away from adding your own twist. This way, the AI team aligns more closely
with your project’s needs (e.g. an agent that always uses British English spelling for a UK audience).
Use Checkpoints and Reviews: While RooCode can automate an entire workflow, it’s wise to insert
checkpoints for yourself, especially early on. For a coding project, you might let it finish one
component and then review the code before it proceeds to the next. For a writing project, you might
have it generate one chapter or section, then you quickly read it before green-lighting the rest. This
human oversight helps catch misunderstandings early. RooCode’s orchestrator allows for this – you
can interact between tasks. In practice, this might mean telling the agent “Looks good, continue to
the next step” or “Hold on, adjust X in the previous output before continuing.”
Maintain Context but Avoid Overload: Because the orchestrator passes summaries between
agents, ensure that important context is indeed in those summaries. You have some influence here:
when you write your initial prompt or provide reference materials, highlight the key info that must
be carried through. If you attach a long specification document, the Planner will summarize it; if
there are critical requirements in it, consider restating them succinctly in your prompt. Conversely,
avoid throwing in unnecessary context that could confuse agents. The goal is to keep each agent’s
context window focused and relevant.
Take Advantage of Tool Integrations: RooCode agents can run code, access the web, etc., by
design. If your workflow can benefit from this, let it. For example, if you’re not sure about an
implementation detail, you could allow the agent to do a quick web search (if you configure a
browser tool) or to run performance benchmarks on the code it wrote. These capabilities can vastly
improve the outcome (the AI essentially can fact-check or test its own work). RooCode is configured

•

45

•

•

•

•

10

https://blog.wadan.co.jp/en/tech/boomerang-mode-ai-orchestration#:~:text=1,deliverables

to use such tools securely – for instance, running a code snippet or scraping a URL – so think of the
agents as not just writers but executors. This is especially useful in automation tasks where an agent
might pull live data or validate something as part of the workflow.

Common Beginner Mistakes (and How to Avoid Them)

Vague Instructions: By far the most common pitfall is giving the agents an ill-defined task. If you’re
too high-level (“Make my project better”), the AI might flounder or take the project in an unintended
direction. Always clarify the scope and success criteria of the task. Remember, agents are diligent but
literal-minded assistants – they excel when the mission is clearly stated. If you find the results off-
track, check if your initial prompt was ambiguous or incomplete.
Over-Autonomy Too Soon: It can be tempting to let the AI run wild on a big project right away.
Beginners sometimes press “Auto” and walk away, only to return to a mess of outputs or an AI that
got stuck in a loop. It’s better to start with shorter runs. Use a moderate level of autonomy: for
example, allow the agent to do 3-4 sub-tasks, then pause. As you gain confidence in how the system
behaves, you can increase autonomy. Also, in scenarios with significant uncertainty (a very open-
ended project), lean towards more transparency – e.g. have the agent check in with you after each
major step . In contrast, for routine tasks (like boilerplate code generation), you can allow higher
autonomy .
Ignoring Agent Boundaries: Each agent has a role – stick to it. If you try to make one agent do
something outside its scope (say, asking the Developer agent to also come up with marketing ideas),
you’ll get subpar results. It’s better to invoke or create a different agent for that purpose. RooCode’s
architecture encourages separation of concerns. Similarly, be mindful of file access: if you see an
agent modifying something it shouldn’t (perhaps due to a broad instruction), adjust the mode
settings or your prompt. For instance, ensure the testing agent doesn’t accidentally rewrite code – it
should only report results. RooCode allows mode-based file permissions , so use that feature to
prevent accidents (e.g., mark certain directories read-only for particular agents).
Not Reading the Logs/Outputs: The orchestrator in RooCode logs key events and each agent’s
output (often in a .roocode/logs file or directly in the chat). Don’t ignore these! Skimming the
agent outputs will tell you why something went wrong if it did. For example, if the final result is
missing a feature, the logs might reveal that the Planner agent never included that feature in the
plan. That’s a clue that your initial prompt might have omitted it, or the agent misunderstood. By
reviewing, you can pinpoint where to intervene or what to clarify next run.
Panicking at Imperfections: AI agents rarely get everything perfect on the first try. Beginners
might see an error message or a less-than-ideal paragraph and think the whole system failed. In
reality, orchestrated agents are designed to handle iterative improvement. If a test fails, that’s
expected – it’s an opportunity for the AI to fix the code (or for you to guide it). If a piece of text isn’t
great, you can prompt an editing agent to refine it. Don’t give up on the process; use the agents to
iterate. Often, a second pass with a bit more guidance yields excellent results. Building intuition here
is key – you’ll learn that a failed step is not a final failure, just feedback for the next step.

Next Steps and Learning Path

Stepping into agent orchestration is a bit like learning a new programming paradigm. Here are some
concrete next steps to continue your journey and build confidence:

Deepen Your Knowledge with Official Docs and Examples: For RooCode, explore the official
documentation (docs.roocode.com) which contains guides on custom modes, advanced

•

•

46

47

•

10

•

•

•

11

https://blog.wadan.co.jp/en/tech/boomerang-mode-ai-orchestration#:~:text=1
https://blog.wadan.co.jp/en/tech/boomerang-mode-ai-orchestration#:~:text=,Routine%20implementation%20work
https://www.linkedin.com/pulse/from-solo-ai-super-team-building-software-agent-swarm-zohar-babin-xtfqf#:~:text=,Tester%20only%20writes%20test%20files

configuration (like Model Context Protocol integrations), and community examples. There are likely
sample projects and video tutorials (the community is active on Reddit, Discord, and YouTube) that
walk through real use cases – these can be gold mines for learning how to structure prompts and
when to intervene. Similarly, for CrewAI and LangChain, read their docs and example repositories.
CrewAI’s docs show how to define agents and tasks in code, and LangChain’s documentation covers
various agent patterns. Seeing a worked example of, say, a CrewAI automation for filling out forms
or a LangChain agent that writes code, will solidify your understanding.
Start Small Projects: Try orchestrating a simple project from scratch. For instance, use RooCode to
create a basic to-do list CLI application (a smaller scope than the web app example) or to convert a
short story outline into a fully written story with chapters. Starting small lets you experiment with
the workflow without being overwhelmed. You can then gradually increase complexity – perhaps
move to a bigger project or add more agents into the mix. The experience of guiding an AI team
through a successful small project is very motivating and educates you on common pitfalls (in a low-
stakes environment).
Experiment with CrewAI and LangChain for Comparison: While RooCode + VSCode is great for
interactive use, it’s worth also trying a script with CrewAI or a chain in LangChain to see the
differences. For example, replicate the same task in CrewAI: define a crew with a similar set of roles
(planner, coder, tester, etc.) and run it via a Python script. This will give you insight into what the
RooCode extension is doing under the hood, and you might discover scenarios where a coded
approach fits better. LangChain could be tried for a non-coding task – say, use LangChain to
orchestrate an agent that reads articles and writes summaries, just to exercise its chaining capability.
By comparing these, you’ll get a well-rounded grasp of multi-agent design patterns.
Join the Community and Learn from Others: One of the best ways to improve is to see what others
are doing. The field of agent orchestration is evolving rapidly (it’s now a hot topic in AI engineering),
and practitioners often share their configurations, prompt strategies, and troubleshooting tips.
Consider joining RooCode’s Discord or forums, LangChain’s community Slack, or CrewAI’s discussion
boards. Asking questions or even lurking to read discussions will expose you to real-world problems
and solutions. You might stumble on a discussion about “How to handle an agent that keeps
forgetting instructions” or “Best practices for splitting a large document for editing agents,” which
directly accelerates your learning.
Keep Up with Updates, but Focus on Fundamentals: The AI tooling landscape in 2025 is fast-
moving. New features (like OpenAI’s function calling, larger context windows, or better memory
mechanisms) are coming out frequently. RooCode, for example, might release an update with
improved diff editing or multi-agent coordination across multiple VS Code windows (some hints of
this exist). While it’s good to stay updated, the core concepts – defining clear agent roles, structuring
tasks, balancing autonomy with control – remain constant. Make sure you understand those
fundamentals well. With that solid foundation, you can easily pick up new features and frameworks
as they emerge. If a new framework claims to be “the next best thing in multi-agent,” you’ll be able to
evaluate it critically, because you know what problems need solving (context management, task
decomposition, etc.) and you can test if it indeed solves them better.

By following these steps, you’ll move from beginner to proficient in orchestrating AI agents. It’s a journey of
learning by doing: each project you attempt with these tools will teach you something new about how AI
thinks and how to steer it. Before long, you’ll find that you can confidently design an agent workflow for a
given problem – essentially acting as the architect of an AI-driven solution. And that is a powerful skill:
you’re not just writing prompts or fine-tuning a single model, you’re structuring an entire multi-agent
system to solve problems collaboratively, which is exactly where a lot of the cutting-edge of applied AI is
heading.

•

•

•

•

12

In conclusion, LLM agent orchestration combines the creativity of prompt engineering with the rigor of
software architecture. With tools like RooCode, LangChain, and CrewAI at your disposal, you now have the
means to tackle complex coding, automation, and content tasks by letting a team of AIs do the heavy lifting
under your guidance. Use this guide as a starting point, but don’t hesitate to explore and experiment — the
field is young, and your innovative workflows and ideas are part of what will shape best practices in the
months and years to come. Good luck, and happy orchestrating!

Sources:

Babin, Z. From Solo AI to Super Team: Building Software with an AI Agent Swarm in Roo Code – LinkedIn
article (Apr 2025). Key insights on using RooCode’s multi-agent “swarm” for software projects

.
IBM. What is crewAI? – IBM Think Blog (2024). Overview of multi-agent frameworks and CrewAI’s
approach .
CrewAI Documentation – Introduction to CrewAI (2025). Describes CrewAI’s design (independent of
LangChain), crew and flow concepts, and company-team analogy for agents .
Langfuse Blog – Open-Source AI Agent Frameworks: Which One Is Right for You? (Mar 2025). Comparison
of LangChain/LangGraph with others; explains LangGraph’s DAG workflow and integration benefits

.
Aydın, K. – Which AI Agent Framework should I use? (CrewAI, LangGraph, ...) – Medium (2025).
Comparison noting CrewAI’s simplicity vs LangGraph’s complexity .
Chen, M. – Boomerang Tasks = New AI-Powered Development – Medium (Apr 2025). Introduction of
RooCode’s Boomerang (task orchestration) mode .
RooCode GitHub – Roo Code README and Features (v3.19, 2025). Lists RooCode capabilities (file
access, commands, custom modes) and use cases .
Reddit – Discussion on RooCode 3.8 features (2025). Developer feedback on Boomerang Tasks (child
tasks summarizing to parent) improving workflow efficiency .
Wadan Tech Blog – AI Orchestration Revolution: Boomerang Mode (Mar 2025). Case study of content
creation with RooCode’s orchestration, incl. end-to-end PDF-to-blog pipeline .
CrewAI Medium Series (Part 4) – A gentle introduction to the LLM multi-agent multiverse: CrewAI (2025).
Details on CrewAI agent attributes and training feedback loop .

From Solo AI to Super Team: Building Software
with an AI Agent Swarm in roo Code
https://www.linkedin.com/pulse/from-solo-ai-super-team-building-software-agent-swarm-zohar-babin-xtfqf

What is crewAI? | IBM
https://www.ibm.com/think/topics/crew-ai

Introduction - CrewAI
https://docs.crewai.com/introduction

Roo Code 3.8 - Boomerang Tasks, Smarter Diff Edits, Multi-Window Support & More : r/ChatGPTCoding
https://www.reddit.com/r/ChatGPTCoding/comments/1j62zn0/roo_code_38_boomerang_tasks_smarter_diff_edits/

GitHub - RooCodeInc/Roo-Code: Roo Code (prev. Roo Cline) gives you a whole dev team of
AI agents in your code editor.
https://github.com/RooCodeInc/Roo-Code

1.
1 17

8 5 9 48

2.
15 2 49

3.
29 3

4.

22 50

5.
33 28

6.
21

7.
16 20

8.
13

9.
43 44

10.
31 51

1 4 5 6 7 8 9 10 11 12 14 17 40 41 42 48

2 15 35 49

3 29 30 34

13

16 18 19 20 39

13

https://www.linkedin.com/pulse/from-solo-ai-super-team-building-software-agent-swarm-zohar-babin-xtfqf#:~:text=Like%20everyone%20else%2C%20I%27ve%20spent,the%20same%20code%20and%20docs
https://www.linkedin.com/pulse/from-solo-ai-super-team-building-software-agent-swarm-zohar-babin-xtfqf#:~:text=Enter%20Roo%20Code,architecture%20to%20testing%20and%20documentation
https://www.linkedin.com/pulse/from-solo-ai-super-team-building-software-agent-swarm-zohar-babin-xtfqf#:~:text=With%20Boomerang%20Tasks%2C%20these%20agents,ready%20for%20their%20specific%20role
https://www.linkedin.com/pulse/from-solo-ai-super-team-building-software-agent-swarm-zohar-babin-xtfqf#:~:text=2,Document
https://www.linkedin.com/pulse/from-solo-ai-super-team-building-software-agent-swarm-zohar-babin-xtfqf#:~:text=,communication%20between%20tasks%20and%20agents
https://www.linkedin.com/pulse/from-solo-ai-super-team-building-software-agent-swarm-zohar-babin-xtfqf#:~:text=,Tester%20only%20writes%20test%20files
https://www.ibm.com/think/topics/crew-ai#:~:text=Rather%20than%20trying%20to%20encompass,distinct%20execution%20paths%20are%20required
https://www.ibm.com/think/topics/crew-ai#:~:text=problem,collaboration%2C%20autonomous%20workflows%20and%20scalability
https://www.ibm.com/think/topics/crew-ai#:~:text=match%20at%20L202%20agent%20collaboration,a%20common%20goal%20or%20task
https://docs.crewai.com/introduction#:~:text=What%20is%20CrewAI%3F
https://docs.crewai.com/introduction#:~:text=Just%20like%20a%20company%20has,collaborating%20to%20accomplish%20complex%20tasks
https://langfuse.com/blog/2025-03-19-ai-agent-comparison#:~:text=LangGraph%20extends%20the%20well,tooling%20and%20integrations%20from%20LangChain
https://langfuse.com/blog/2025-03-19-ai-agent-comparison#:~:text=directed%20acyclic%20graph,tooling%20and%20integrations%20from%20LangChain
https://medium.com/@aydinKerem/which-ai-agent-framework-i-should-use-crewai-langgraph-majestic-one-and-pure-code-e16a6e4d9252#:~:text=With%20CrewAI%20framework%20it%E2%80%99s%20much,done%20without%20a%20setup%20hassle
https://medium.com/@aydinKerem/which-ai-agent-framework-i-should-use-crewai-langgraph-majestic-one-and-pure-code-e16a6e4d9252#:~:text=Figure%203%20Example%20Graph%20of,an%20Agent
https://mychen76.medium.com/boomerang-tasks-make-ai-agent-powered-development-fun-again-522bf8962dc4#:~:text=Roo%20Code%20promotes%20a%20custom,Ask%2C%20architect%2C%20code%2C%20or%20debug
https://github.com/RooCodeInc/Roo-Code#:~:text=Roo%20Code%20is%20an%20AI,It%20can
https://github.com/RooCodeInc/Roo-Code#:~:text=What%20Can%20Roo%20Code%20Do%3F
https://www.reddit.com/r/ChatGPTCoding/comments/1j62zn0/roo_code_38_boomerang_tasks_smarter_diff_edits/#:~:text=This%20update%20sounds%20incredible%21%20The,switching
https://publish.obsidian.md/aixplore/AI+Systems+%26+Architecture/agentic-content-creation-openai-guide-case-study#:~:text=class%3D%22callout%22%20data,Ready%20Materials%20Content%20creation
https://publish.obsidian.md/aixplore/AI+Systems+%26+Architecture/agentic-content-creation-openai-guide-case-study#:~:text=agents%20with%20specialized%20capabilities%2C%20we,area%22%3E%20%23%23%23%201.%20Specialized
https://medium.com/@aydinKerem/which-ai-agent-framework-i-should-use-crewai-langgraph-majestic-one-and-pure-code-e16a6e4d9252#:~:text=Creating%20an%20agent%20with%20crewAI,framework%20requires%20four%20attributes
https://medium.com/mitb-for-all/a-gentle-introduction-to-the-llm-multi-agent-multiverse-part-4-crewai-147ada6db54c#:~:text=You%20might%20be%20wondering%2C%20%E2%80%98Where%E2%80%99s,abstraction
https://www.linkedin.com/pulse/from-solo-ai-super-team-building-software-agent-swarm-zohar-babin-xtfqf#:~:text=Like%20everyone%20else%2C%20I%27ve%20spent,the%20same%20code%20and%20docs
https://www.linkedin.com/pulse/from-solo-ai-super-team-building-software-agent-swarm-zohar-babin-xtfqf#:~:text=extension%20marketplace,architecture%20to%20testing%20and%20documentation
https://www.linkedin.com/pulse/from-solo-ai-super-team-building-software-agent-swarm-zohar-babin-xtfqf#:~:text=2,Document
https://www.linkedin.com/pulse/from-solo-ai-super-team-building-software-agent-swarm-zohar-babin-xtfqf#:~:text=4,relevant%20to%20their%20task%20needs
https://www.linkedin.com/pulse/from-solo-ai-super-team-building-software-agent-swarm-zohar-babin-xtfqf#:~:text=4,relevant%20to%20their%20task%20needs
https://www.linkedin.com/pulse/from-solo-ai-super-team-building-software-agent-swarm-zohar-babin-xtfqf#:~:text=With%20Boomerang%20Tasks%2C%20these%20agents,ready%20for%20their%20specific%20role
https://www.linkedin.com/pulse/from-solo-ai-super-team-building-software-agent-swarm-zohar-babin-xtfqf#:~:text=,communication%20between%20tasks%20and%20agents
https://www.linkedin.com/pulse/from-solo-ai-super-team-building-software-agent-swarm-zohar-babin-xtfqf#:~:text=,Tester%20only%20writes%20test%20files
https://www.linkedin.com/pulse/from-solo-ai-super-team-building-software-agent-swarm-zohar-babin-xtfqf#:~:text=,specific%20instructions%20and%20defined%20standards
https://www.linkedin.com/pulse/from-solo-ai-super-team-building-software-agent-swarm-zohar-babin-xtfqf#:~:text=,step
https://www.linkedin.com/pulse/from-solo-ai-super-team-building-software-agent-swarm-zohar-babin-xtfqf#:~:text=,manageable%20for%20the%20AI%20agents
https://www.linkedin.com/pulse/from-solo-ai-super-team-building-software-agent-swarm-zohar-babin-xtfqf#:~:text=Enter%20Roo%20Code,architecture%20to%20testing%20and%20documentation
https://www.linkedin.com/pulse/from-solo-ai-super-team-building-software-agent-swarm-zohar-babin-xtfqf#:~:text=5,ensures%20the%20project%20moves%20forward
https://www.linkedin.com/pulse/from-solo-ai-super-team-building-software-agent-swarm-zohar-babin-xtfqf#:~:text=,like%20a%20dedicated%20security%20consultant
https://www.linkedin.com/pulse/from-solo-ai-super-team-building-software-agent-swarm-zohar-babin-xtfqf#:~:text=quality%20output%2C%20with%20clear%20communication,between%20tasks%20and%20agents
https://www.linkedin.com/pulse/from-solo-ai-super-team-building-software-agent-swarm-zohar-babin-xtfqf#:~:text=,Tester%20only%20writes%20test%20files
https://www.linkedin.com/pulse/from-solo-ai-super-team-building-software-agent-swarm-zohar-babin-xtfqf
https://www.ibm.com/think/topics/crew-ai#:~:text=problem,collaboration%2C%20autonomous%20workflows%20and%20scalability
https://www.ibm.com/think/topics/crew-ai#:~:text=Rather%20than%20trying%20to%20encompass,distinct%20execution%20paths%20are%20required
https://www.ibm.com/think/topics/crew-ai#:~:text=crewAI%27s%20inherent%20delegation%20and%20communication,delegate%20work%20or%20ask%20questions
https://www.ibm.com/think/topics/crew-ai#:~:text=match%20at%20L202%20agent%20collaboration,a%20common%20goal%20or%20task
https://www.ibm.com/think/topics/crew-ai
https://docs.crewai.com/introduction#:~:text=Just%20like%20a%20company%20has,collaborating%20to%20accomplish%20complex%20tasks
https://docs.crewai.com/introduction#:~:text=What%20is%20CrewAI%3F
https://docs.crewai.com/introduction#:~:text=,orchestration%20and%20supports%20Crews%20natively
https://docs.crewai.com/introduction#:~:text=With%20over%20100%2C000%20developers%20certified,ready%20AI%20automation
https://docs.crewai.com/introduction
https://www.reddit.com/r/ChatGPTCoding/comments/1j62zn0/roo_code_38_boomerang_tasks_smarter_diff_edits/#:~:text=This%20update%20sounds%20incredible%21%20The,switching
https://www.reddit.com/r/ChatGPTCoding/comments/1j62zn0/roo_code_38_boomerang_tasks_smarter_diff_edits/
https://github.com/RooCodeInc/Roo-Code#:~:text=Roo%20Code%20is%20an%20AI,It%20can
https://github.com/RooCodeInc/Roo-Code#:~:text=,and%20capabilities%20through%20Custom%20Modes
https://github.com/RooCodeInc/Roo-Code#:~:text=,and%20capabilities%20through%20Custom%20Modes
https://github.com/RooCodeInc/Roo-Code#:~:text=What%20Can%20Roo%20Code%20Do%3F
https://github.com/RooCodeInc/Roo-Code#:~:text=,Automate%20browser%20actions
https://github.com/RooCodeInc/Roo-Code

Boomerang Tasks = New AI-Powered Development | by Minyang Chen | Apr, 2025 | Medium
https://mychen76.medium.com/boomerang-tasks-make-ai-agent-powered-development-fun-again-522bf8962dc4

Comparing Open-Source AI Agent Frameworks - Langfuse Blog
https://langfuse.com/blog/2025-03-19-ai-agent-comparison

Mastering AI Agent Orchestration- Comparing CrewAI, LangGraph, and OpenAI Swarm | by
Arul | Medium
https://medium.com/@arulprasathpackirisamy/mastering-ai-agent-orchestration-comparing-crewai-langgraph-and-openai-
swarm-8164739555ff

Which AI Agent framework should i use? (CrewAI, Langgraph, Majestic-one and pure
code) | by Kerem Aydın | Medium
https://medium.com/@aydinKerem/which-ai-agent-framework-i-should-use-crewai-langgraph-majestic-one-and-pure-code-
e16a6e4d9252

agentic-content-creation-openai-guide-case-study - AIXplore - Tech Articles - Obsidian Publish
https://publish.obsidian.md/aixplore/AI+Systems+%26+Architecture/agentic-content-creation-openai-guide-case-study

AI Orchestration Revolution: Development Automation Through Boomerang Mode - Wadan, Inc.
https://blog.wadan.co.jp/en/tech/boomerang-mode-ai-orchestration

CrewAI — Part 4 of LLM Multi-Agents series | by Tituslhy | MITB For All | Medium
https://medium.com/mitb-for-all/a-gentle-introduction-to-the-llm-multi-agent-multiverse-part-4-crewai-147ada6db54c

21 38

22 23 50

24 25 32 36

26 27 28 31 33 37

43 44

45 46 47

51

14

https://mychen76.medium.com/boomerang-tasks-make-ai-agent-powered-development-fun-again-522bf8962dc4#:~:text=Roo%20Code%20promotes%20a%20custom,Ask%2C%20architect%2C%20code%2C%20or%20debug
https://mychen76.medium.com/boomerang-tasks-make-ai-agent-powered-development-fun-again-522bf8962dc4#:~:text=,Ask%2C%20architect%2C%20code%2C%20or%20debug
https://mychen76.medium.com/boomerang-tasks-make-ai-agent-powered-development-fun-again-522bf8962dc4
https://langfuse.com/blog/2025-03-19-ai-agent-comparison#:~:text=LangGraph%20extends%20the%20well,tooling%20and%20integrations%20from%20LangChain
https://langfuse.com/blog/2025-03-19-ai-agent-comparison#:~:text=directed%20acyclic%20graph,of%20useful%20tooling%20and%20integrations
https://langfuse.com/blog/2025-03-19-ai-agent-comparison#:~:text=directed%20acyclic%20graph,tooling%20and%20integrations%20from%20LangChain
https://langfuse.com/blog/2025-03-19-ai-agent-comparison
https://medium.com/@arulprasathpackirisamy/mastering-ai-agent-orchestration-comparing-crewai-langgraph-and-openai-swarm-8164739555ff#:~:text=LangGraph%20is%20fundamentally%20built%20around,with%20edges%20controlling%20that%20Node2
https://medium.com/@arulprasathpackirisamy/mastering-ai-agent-orchestration-comparing-crewai-langgraph-and-openai-swarm-8164739555ff#:~:text=Workflows%20blog,Agents%20with%20LangChain%E2%80%99s%20Agent%20Framework
https://medium.com/@arulprasathpackirisamy/mastering-ai-agent-orchestration-comparing-crewai-langgraph-and-openai-swarm-8164739555ff#:~:text=The%20memory%20system%20allows%20agents,cumulative%20knowledge%20throughout%20the%20workflow
https://medium.com/@arulprasathpackirisamy/mastering-ai-agent-orchestration-comparing-crewai-langgraph-and-openai-swarm-8164739555ff#:~:text=State%20management%20is%20straightforward%2C%20tracking,JSON%2FPydantic%29%20enabling%20schema%20enforcement
https://medium.com/@arulprasathpackirisamy/mastering-ai-agent-orchestration-comparing-crewai-langgraph-and-openai-swarm-8164739555ff
https://medium.com/@arulprasathpackirisamy/mastering-ai-agent-orchestration-comparing-crewai-langgraph-and-openai-swarm-8164739555ff
https://medium.com/@aydinKerem/which-ai-agent-framework-i-should-use-crewai-langgraph-majestic-one-and-pure-code-e16a6e4d9252#:~:text=AutoGen%20is%20a%20framework%20developed,tasks%20in%20the%20IT%20industry
https://medium.com/@aydinKerem/which-ai-agent-framework-i-should-use-crewai-langgraph-majestic-one-and-pure-code-e16a6e4d9252#:~:text=,the%20new%20state%20of%20the
https://medium.com/@aydinKerem/which-ai-agent-framework-i-should-use-crewai-langgraph-majestic-one-and-pure-code-e16a6e4d9252#:~:text=Figure%203%20Example%20Graph%20of,an%20Agent
https://medium.com/@aydinKerem/which-ai-agent-framework-i-should-use-crewai-langgraph-majestic-one-and-pure-code-e16a6e4d9252#:~:text=Creating%20an%20agent%20with%20crewAI,framework%20requires%20four%20attributes
https://medium.com/@aydinKerem/which-ai-agent-framework-i-should-use-crewai-langgraph-majestic-one-and-pure-code-e16a6e4d9252#:~:text=With%20CrewAI%20framework%20it%E2%80%99s%20much,done%20without%20a%20setup%20hassle
https://medium.com/@aydinKerem/which-ai-agent-framework-i-should-use-crewai-langgraph-majestic-one-and-pure-code-e16a6e4d9252#:~:text=Crewai%2C%20a%20scalable%2C%20data,can%20be%20a%20huge%20problem
https://medium.com/@aydinKerem/which-ai-agent-framework-i-should-use-crewai-langgraph-majestic-one-and-pure-code-e16a6e4d9252
https://medium.com/@aydinKerem/which-ai-agent-framework-i-should-use-crewai-langgraph-majestic-one-and-pure-code-e16a6e4d9252
https://publish.obsidian.md/aixplore/AI+Systems+%26+Architecture/agentic-content-creation-openai-guide-case-study#:~:text=class%3D%22callout%22%20data,Ready%20Materials%20Content%20creation
https://publish.obsidian.md/aixplore/AI+Systems+%26+Architecture/agentic-content-creation-openai-guide-case-study#:~:text=agents%20with%20specialized%20capabilities%2C%20we,area%22%3E%20%23%23%23%201.%20Specialized
https://publish.obsidian.md/aixplore/AI+Systems+%26+Architecture/agentic-content-creation-openai-guide-case-study
https://blog.wadan.co.jp/en/tech/boomerang-mode-ai-orchestration#:~:text=1,deliverables
https://blog.wadan.co.jp/en/tech/boomerang-mode-ai-orchestration#:~:text=1
https://blog.wadan.co.jp/en/tech/boomerang-mode-ai-orchestration#:~:text=,Routine%20implementation%20work
https://blog.wadan.co.jp/en/tech/boomerang-mode-ai-orchestration
https://medium.com/mitb-for-all/a-gentle-introduction-to-the-llm-multi-agent-multiverse-part-4-crewai-147ada6db54c#:~:text=You%20might%20be%20wondering%2C%20%E2%80%98Where%E2%80%99s,abstraction
https://medium.com/mitb-for-all/a-gentle-introduction-to-the-llm-multi-agent-multiverse-part-4-crewai-147ada6db54c

	Navigating LLM Agents and Orchestration: A Practical Guide for Developers
	Executive Summary
	Conceptual Overview
	Landscape Comparison: Roocode vs. LangChain vs. CrewAI
	RooCode – AI Dev Team in Your Editor
	LangChain (LangChain + LangGraph) – Generalist Framework with Rich Tooling
	CrewAI – Lean, Multi-Agent Orchestration Made Simple

	Hands-On with RooCode and VSCode
	Recommendations, Pitfalls, and Next Steps
	Getting the Most out of RooCode (Tips and Best Practices)
	Common Beginner Mistakes (and How to Avoid Them)
	Next Steps and Learning Path

